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Abstract

This paper is aimed at investigating the effect of roughness of the porous/fluid interface on turbulent convection heat transfer in composite
porous/fluid ducts. It is expected that in many cases the effect of interface roughness on convection may be more significant than the effect of
possible flow turbulization in the porous region. The analysis of appropriate dimensionless parameters shows that in many practical situations
even if the flow in the clear fluid region is turbulent, the flow in the porous region remains laminar. The problem is thus reduced to matching
the turbulent flow solution in the clear fluid region with the laminar flow solution in the porous region at the rough interface. It is shown that
roughness of the porous/fluid interface significantly impacts turbulent flow in the clear fluid region as well as overall heat transfer in the duct.
0 2004 Elsevier SAS. All rights reserved.

1. Introduction and heat transfer in porous media is considered in Flick
et al. [12]. A weak turbulence regime that may occur in a
In recent years, there hasdn a renewed interest in  porous layer heated from below is discussed in Vadasz [13].
turbulent flows in porous media as well as in composite A good review of some early turbulence models is presented
porous/fluid domains. Antohe and Lage [1] and Getachew etin Lage [14].
al. [2] derived ac—e model for simulation of a macroscopic There is also considerable interest in turbulent flows in
turbulence in porous media. Chung et al. [3] presented com-composite porous/fluid domains. Hahn et al. [15] reported
putational results obtained using tkes model suggested  the results of direct numerical simulation of turbulent flow
in Refs. [1,2]. De Lemos and Pedras [4] and Pedras andin composite porous/fluid ducts. Prakash et al. [16,17] in-
de Lemos [5-8] discussed different aspects of macroscopicyestigated turbulent flow generated by a round water jet that
modeling of turbulence in homogeneous porous media. Injmpinges on porous foam. Silva and de Lemos [18] and de
[4], four major classes of turbulence models were identified, |_emos and Silva [19] developed a model for a turbulent flow
and the time—space and spdoee averaging procedures jn g composite porous/fluid domain that accounts for the
aimed at obtaining the turbulent kinetic energy equation tyrpulence generated by the porous matrix. Kuznetsov and
were compared. Masuoka et al. [9] presented an experimen-xjong [20] suggested that the flow in composite porous/fluid
tal study of chaotic behavior of a_flow through porous_media domains can be modeled by assuming turbulent flow in the
composed of a bank of tubes in a narrow gap during the ¢jear (of solid obstacles) fluid region and laminar flow in the
tran_sition to turbulence. Barr [10] prop_osed a procedL_lre for porous region. They emphasized that even though the flow in
testing the occurrence of turbulence in porous media andihe porous region is assumed laminar, it is important to use
calculating the effective permeability when it occurs. Aone- e Forchheimer correction in the momentum equation and
equation model for two-dimensional turbulent flow through erma) dispersion term in the energy equation for the porous
porous media is suggested in Alvarez et al. [11]. This model ygqiqn it should be noted that there is a difference in opin-
is based on the assumption that the production term in the;, s o0t the physical origin of the Forchheimer drag and
turbulent kinetic energy transport equation is proportional ynema) dispersion. Masuka and Takatsu [21] suggested that
to the cube of velocity. Semi-empirical modeling of flow o Forchheimer flow resistance and thermal dispersion are
caused mainly by turbulent mixing in porous media. A dif-
E-mail addressavkuznet@eos.ncsu.edu (A.V. Kuznetsov). ferent point of view is shared by Nield [22] who, referencing
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Nomenclature

fluid thermal diffusivity ..............
eddy diffusivityof heat...............
closure coefficient fok—! model,= 5.0
closure coefficient fok—/ model,= 62.5
closure coefficient fok— model,

max1, A%1 —k}/90)]

Forchheimer coefficient
dimensionless experimental constant in
the correlation for thermal dispersion
closure coefficient fok—/ model,= 2.5
closure coefficient fok—s model,= 1.44
closure coefficient fok— model,= 1.92
closure coefficient fok—s model,= 0.09

average diameter of a porous patrticle. ...... m

Darcy numberk /R?

heat transfer coefficient ... ...... W2.K-1
turbulence kinetic energy ............. 2y 2
dimensionless turbulence kinetic

energyk /u?

fluid thermal conductivity . .. . . .. wh-1.K-1

stagnant thermal conductivity of the porous

medium ..., w1kt
equivalent sand-grain roughness ........... m
dimensionless equivalent sand-grain
roughnessk,u. /vy

permeability of the porousregion......... 2m
dimensionless turbulence lenghthscale, defined
by Eq. (11)

dimensionless turbulence lenghthscale, defined
by Eq. (12)

Nusselt numbe# 2R/ k ¢

PreSSUMe. . .ttt Pa
Prandtl numben ¢ /a ¢

turbulent Prandtl numbery /a7

wallheat flux ....................... W2
radial coordinate ......................... m
dimensionless radial coordinaig,r/v s
ductradius. ... m
dimensionless duct radiug; R /vy

Reynolds number based on filtration

velocity in the bulk of the porous region

andK /2 as characteristic length,

defined by Eq. (49)

Reynolds nhumber based on the average particle
diameter and the friction velocity at the
porous/fluid interfacey.d, /v ¢

interface-distance Reynolds

number,yeik/?/v

U+

m

y+

+
Yeff

+
Ymatch

Yo

Greek symbols

B

™

Meff

Reynolds number based on the width of the clear
fluid region and the mean velocity in this region
defined by Eq. (47)

temperature......... ... b
mean flow temperature....................
wall temperature .............. ..., K

longitudinal velocity, .................
dimensionless velocity /u,
dimensionless filtration velocity at the
porous/fluid interface

friction velocity at the porous/fluid interface,
TG/
dimensionless mean flow velocity in the duct,
defined by Eq. (25)

dimensionless distance from the porous/fluid
interface R —r T

modified dimensionless distance from the
porous/fluid interfacey* + yg

matching point ok— andk— models, defined
by Eq. (20)

dimensionless hydrodynamic roughness

dimensionless adjustable coefficient in the
matching condition for the shear stress at the
porous/fluid interface

turbulence dissipationrate............ 2g73
dimensionless turbulence dissipation
rate,evy /u?

dimensionless temperature for the uniform wall
heat flux case(1/Nu(T — Tw)/(T,, — Tw)
effective viscosity of porous

medium........oovvvvieennennn.. kg 1s1
fluid viscosity ................... kon1s1
fluid kinematic viscosity ............. frs 1

eddy diffusivity of momentum .. ...... 1
dimensionless eddy viscosityy /v ¢
dimensionless position of the interface, defined
in Fig. 1

fluiddensity ........................
closure coefficient fok—s model,= 1.3
shear stress at the porous/fluid interfacemN?
dimensionless temperature for the uniform wall
temperature cas€l’ — Tw) /(T — Tw)
porosity
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a book by Bear [23], pointed out that actual turbulence oc-
curs at values of the Reynolds number at least one order of
magnitude higher than that at which the flow starts deviating
from the Darcy law. Recently, Macedo et al. [24] investi-
gated turbulence effects on a flow through a pseudo porous
medium by numerically solving a set of Reynolds-averaged
Navier—Stokes equations with the-¢ model for turbu- y o _
lence. A two-dimensional porous medium was obtained by g?’t‘];‘égtfl‘;i"‘:;rﬂmgn‘{'ggfv“;;‘;ﬁ pecien
randomly placing solid obstacles. A surprisingly good agree- t

ment with the Forchheimer’s equation for a turbulent flow at

relatively small Reynolds numbers was observed. For high g
Reynolds number conditions, a deviation from the results X
predicted by the Forchheimer equation was observed. The
results of [24] thus suggest that the Forchheimer equation

may be acceptable to model not only laminar flow in porous

media, but also the transitional regime or maybe even weakPOlion, §R < r < R, is occupied by an isotropic fluid-
turbulence. saturated porous medium of uniform porosity. The wall of

expected to occur in the clediuid region; therefore, in ~ t€mperature.

most cases the flow in the porous region either remains

laminar or just starts its transition to turbulence even if 5 M athematical model

the flow in the clear fluid region is fully turbulent. This

conclusion is confirmed later on in the paper by comparing ~ As Fig. 1 shows, the flow domain can be divided into

appropriate Reynolds numbers with their critical values. two regions, the central clear fluid region, where the flow is

Therefore, for most cases, using the Forchheimer term inturbulent, and the peripheral porous region, where the flow

the momentum equation and the thermal dispersion termis assumed to be laminar.

in the energy equation for the porous region may result in

a sufficiently good model for the porous region. However, 2.1. Momentum equation and turbulence model for the

what may really affect turbulent convection in composite clear fluid region

domains is the roughness of the porous/fluid interface. If

particles or fibers that constitute the porous medium (and  For hydrodynamically fully developed flow, the velocity

the pores) are relatively large, the impact of the roughnessdistribution in the clear fluid region is computed from the

of the porous/fluid interface on convection heat transfer following equation [27]:

in composite porous/fluid domains may be much more g, + 1 yt

significant than the impact of possible turbulence in the avE +< - +>

- y 147 &R

porous region.
The aim of this paper is to extend the approach suggestedwhere u™* is the dimensionless velocity;/u.; u is the

in Ref. [20] in two ways. The model presented in [20] longitudinal velocity; u, is the friction velocity at the

assumed a hydraulically smooth interface. In this paper this porous/fluid interface,/z; /ps; 7 is the shear stress at the

restriction is lifted and the model is extended to the case porous/fluid interface (at = §R); py is the fluid density;

of a rough interface. The effects of the interface roughness R is the dimensionless radius of the dugt,R/vy; R is

on turbulent forced convection in a composite porous/fluid the duct radiusy is the fluid kinematic viscosityy™ is

duct are extensively studied. Secondly, the model of [20] the dimensionless distance from the porous/fluid interface

relied on a simplified algebraic model to calculate turbulent towards the duct centegR* — r+; rT is the dimensionless

viscosity in the clear fluid region. In this paper a much more radial coordinateu.r/vy; r is the radial coordinater;}r

accuratec—s model is utilized. To enable the utilization of is the dimensionless eddy viscosityy/vs; vy is the

the k—e model for the domain with a rough interface, this fluid kinematic viscosity; andr is the eddy diffusivity of

model is combined with a— model which is used nearthe  momentum.

interface, as suggested in Durbin et al. [25] and Rodi [26]. At~ Durbin et al. [25] suggestedtilizing a combnation of

a matching point, which is locatl in the clear fluid regionat k- (in the vicinity of the wall) andk—e (in the rest of the

some distance from the interface, computations are switcheddomain) models to account for the roughness of the wall.

from «—I to k—e model, the latter is utilized in the core of In this paper, this combined model is applied to the clear

qy = const or Ty, = const

porous layer adjacent to the wall,
laminar flow region

rough interface

Fig. 1. Schematic diagram of the problem.

(1)

the clear fluid region. fluid region, 0< r* < £R™T. This allows accounting for the
A composite circular duct considered in this paper is roughness of the porous/fluid interface.
displayed in Fig. 1. The central portion of the ductg0 In the core of the clear fluid region, Wh@ﬂ;atchg yt <

r < £R, is occupied by a clear fluid while the peripheral R™ (the equation for the matching point is given later on),
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is the interface-distance Reynolds numbgf.in Egs. (11)—

flow, the turbulence kinetic energy equation can be presented(14) is the modified dimensionless distance from the inter-

as.:
dut\? 1 Akt
+( 2" _ ot - + +\ 7" |
UT(arJF) et rtort [r (1+v )8r+:| =0 2)
where
Kt =k/u?, et =evy/u? (3)

The dissipation rate equation for the fully developed flow is

et N JuT\?2 (e+)2

o) T

1 v\ det
S IS [T A Pt 4
rtort |:r < * a€>8r+j| @

The dimensionless eddy viscosity can be found from the fol-
lowing equation:

(k)2
v;f =Cy, o (5)
The closure coefficients for tHe- model are
Ce1=1.44, Ceo =192 o, =1.3, C,=0.09
(6)

In the vicinity of the fluid/porous interface, whenQy™ <
erﬁatcn the following k— model is utilized. Eq. (2) stands,

but instead of Eq. (4) the dissipation rate is found from the 4

following equation:

(k+)3/2
=7 (7)
&
where
+ Ur
IF =1, o (8)

face, which accounts for the interface roughness and can be
calculated as follows:

Y=y +yg (15)
where y:{ is the dimensionless hydrodynamic roughness,
which can be related to the dimensionless equivalent sand-
grain roughness parametef, (= ksu-/vs), by an equation
given in Cebeci and Chang [28]:

yg =0 ifk} <4535

(this corresponds to a hydraulically smooth surjace
(16a)

vg =0.9[\/ k" — kF exp(—k;F/6)] if k> 4.535
(this corresponds to a hydraulically rough surfad@6b)

Alternatively, a calibration pcedure described in Ref. [25]
can be utilized to find a relation betweegi andk;". A de-
pendence o@;{ obtained as a result of such calibration is
displayed in Fig. 2 of Ref. [25]. To complete modeling the
effect of interface roughness, is necessary to relate the
equivalent dimensionless sand-grain roughness parameter,
k;, to the Darcy number and porosity in the porous region.
According to the Carman—-Kozeny equation [29], the aver-
age diameter of a solid particle that constitutes the porous
medium can be estimated as:
V1801 - p)K V2
032

whereK is the permeability ang is the porosity.

Assuming that the equivalent sand-grain roughness para-
meter,k, can be estimated a5, /2 (Prof. D.A. Nield [30]
noted that this a good estimate providing the porous medium
is machined to have a “plaf interface; in the case of a
“coastline”d, /2 gives just a lower bound on the roughness),

p= (17)

Instead of Eq. (5), the dimensionless eddy viscosity is found the following equation fok{" is obtained:

from the following equation

1/2
v = Cu(k)Lf 9
where
=1, (10)
Vf

For thisk— model, the Van Driest form of length scales is
adopted:

I = Civgyl—e ) a
and
lj_ = Cly:ﬁ(l— e_Ry/AU) (12)
where

+ Ur

oy T 13

Yeff = Yeff o (23)
and

Ry = yetk™? /vy =y (k+)"? (14)

y = Yeff V= Vest

= Mg ue V18U —9) g
STy Ty 2¢3/2
6.70(1 — ¢)

— pt 1/2

= 72 Da (18)
whereDa is the Darcy numbei / R?.

The closure coefficients for the-l model are
C;=25  A.=50 A%=625,
Ay =ma{1, A%(1 -k} /90)] (19)

According to [25], the point where thie-l model (which is
used near the interface) must be switched-te model is
found as

1/2
y$atch: IOQ(ZO)AV/(k+) / (20)
The boundary conditions fdrande equations are

1
k*(0) = —=—min[1, (k}f /90)°] (21)

N

wherek} is given by Eq. (18).
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In the center of the pipe because of the symmetry
kT /art =0 and et /ort =0 (22)

In the matching point defined by Eq. (20) the turbulence — —_
kinetic energy and the dissipation rate must be continuous.

2.2. Momentum equation for the porous region

The Brinkman—Forchheimer-extended Darcy equation

[29] is utilized to model the assumed laminar flow in the

porous region. Utilizing the dimensionless variables defined

above, this equation can be presented as [20]:

2 pef\ 1 d (L duT ut
-t )7 — ) - —
ERT wy Jrtdret drt Da(R+)?

CF +\2 _
" Dal/2gr+ (™) =0
wherecr is the Forchheimer coefficient, s is the fluid dy-

namic viscosity, andees is the effective dynamic viscosity
in the porous region.

(23)

2.3. Energy equation for the clear fluid region

1051

For theuniform wall temperature casthe energy equa-
tion can be presented as:

1 d LPry [ do] 1 ﬂ
rtdrt [<1+ J72 P_r,)r dr_+i| = ®)2 Nu¢ Ur (29)
where
¢=T —Tw)/(Tn —Tw) (30)

is the dimensionless temperature for theiform wall
temperature case.

2.4. Energy equation for the porous region

For theuniform wall heat flux casthe energy equation
for the porous region can then be presented as:

1 d ki do
— ™ 4 cPrReut )rt—
rtdrt I:(kf +CPrREu )r dr+i|
1 ut
_ ur 31
(RT2 UL (1

whereC is the dimensionless experimental constant in the

The energy equation for the clear fluid region is based correlation for thermal dispersiott; is the fluid thermal

on the constant turbulent Prandtl nhumber model. More
sophisticated models can be easily used with the approac
developed in this paper. Since the flow is hydrodynamically

and thermally fully developed, for theniform wall heat flux
casethe energy equation can be presented as:

1 d 14 pF Pry ,doq] 1 ut
rtdrt [( tr Prt)r dr+:| o _(R+)2 U,y
where Pr is the Prandtl numben/ar; ayr is the fluid
thermal diffusivity; Pr, is the turbulent Prandtl number,
vr/ar; ar is the eddy diffusivity of heat; anw;g is the
mean fluid velocity in the duct:

(24)

RT
2
Ul = R /u+r+ drt
0

(25)

In Eq. (24),6 is the dimensionless temperature for the
uniform heat flux caséthe dimensionless temperature for
the uniform wall temperature case is defined differently):

0 = A/Nu(T = Tw)/(Tn — Tw) (26)

whereT is the temperaturdly is the wall temperature (at
r+ = R™), T,, is the mean temperature in the duct:

R
2
Tm = RZ—W/MTr dr (27)
0
andNu is the Nusselt number:
Nu=h2R/ky =2Rq" /[ks(Tw — Tp)] (28)

wherer is the heat transfer coefficient.

conductivity; k,, is the stagnant thermal conductivity of

Hhe porous medium (whea* = 0); Re, = u<d, /vy is the

Reynolds number based on the average particle diaragter,
and the friction velocity at the porous/fluid interface,

The termCPrRe,u™ in Eq. (31) accounts for the trans-
verse thermal dispersion [31-33]. Longitudinal thermal dis-
persion and longitudinal thermal conduction are neglected,
which are valid assumptions if the Péclet number is large.

For theuniform wall temperature casthe energy equa-
tion for the porous region is:

1 d[(kn
rtdrt [\ ky

1
=R

+ CPr Repu+>r+d—¢i|

drt

ut

o (32)

2.5. Compatibility condition

Once the velocity and temperature distributions are com-
puted, the Nusselt number can be computed utilizing a
compatibility condtion [34]. For theuniform wall heat flux
casethe compatibility condition is

Rt
Nu=U’ (R+)2/ |:2/ utort dr+] (33)

0

For the uniform wall temperature case the compatibility
condition is

k d
Nu= _2~m g+ 99

kyr drt (34)

rt=R*
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2.6. Boundary conditions Ol +=gr+—0= Pl +=£r++0

9 _ ket 00

= 43
ort lr+t=gRr+-0 kf ort lrt=gR+40 ( )

At the duct wall, ¥ = R*, a no-slip hydrodynamic
boundary conditiond imposed:

respectively.

+ _
ur=0 (35) In the center of the duct;” = 0, for theuniform wall heat
From the definition of the dimensionless temperatures flux casehe following symmetry condition is imposed:
(Egs. (26) and (30)) it follows that at- = RT 90
0—0 (36) o= 0 (44)
for the uniform wall heat flux casand For the uniform wall temperature cas¢he appropriate
boundary condition at* =0 is:
=0 (37) 90
for theuniform wall temperature case 77 =0 (45)
.. . r
From the definitions ofu™ and r* (or simply from . o .
Eq. (1)) it follows that No hydrodynamic boundary condl_tlon is needed in t_he
N center of the duct because Eq. (1) is a first-order equation;
3L —_ 1 (38) the required boundary condition for Eq. (1) is given by
ort lrr=grt—0 1+ v;f|,+:5R+ Eq. (41) once the filtration velocity on the porous side of

It should be noted that because the interface is rough, thethe |r_1t_erfac<_a is found by solving Eq. (23) with boundary
dimensionless eddy viscositly}“, is not equal to zero at the conditions given by Egs. (35) and (40).

interface (cf. Egs. (21) and (9)). The jump in the shear stress

condition suggested by Ochoa-Tapia and Whitaker [35,36]

for modeling a porous/fluid interface can be presented as: - Resultsand discussion

( Veff )E _ E Dimensionless governing equations are discretized by
Vi 4+ Vrltmggt ) Ort lrt=gRT+0  OrT lrt=gRT-0 a finite-difference method leading to algebraic systems
B n of equations with tridiagonal matrices. Nonlinearities in

Zm”i (39) these equations are handled by Gauss-Siedel iterations.

Convergence of iterations is improved, when necessary, by
using the relaxation technique. Parameter values utilized in
the computations (unless a different value is explicitly shown
on the figure) are summarized in Table 1.

It should be noted thaRe, is not an independent

where ul+ is the dimensionless filtration velocity at the
interface, andgs is the dimensionless adjustable coefficient
[35,36].

Substituting Eq. (38) into Eq. (39) results in:

( Veff/V ¢ ) du™T L 1 parameter; its value can be deduced from definitiorRef
T4 oFlege ) 0t lerr+0 " 14 vF|ope andR™ and Eq. (17) as:

— '3 + +V 18(11 - §0) 1/2

= Dat/2g+ i (40) Re, =R TDa / (46)

Eq. (40) gives the second boundary condition (in addition The major assumption made inis research is that the flow
to Eq. (35)) necessary for the determination of the velocity , the clear fluid region is turbulent while the flow in the

profile in the porous region by solving Eq. (23). porous region is laminar. To prove that this assumption is
~ Inaddition to Eq. (40), continuity of the filtration veloc-  \5jiq it is necessary to estimate Reynolds numbers in the
ity, temperature, and heat flux is imposed at the interface, atqar fluid and porous regions and compare them with their
r* =&R*. This translates into the following hydrodynamic  .(itical values

boundary condition: As shown in [20], the Reynolds number based on the
M+|r+:§R+70 = u+|r+=gR++o = ”z+ (41) width of the clear fluid region, £R, and the mean velocity

in this region (U, , iIs defined as:
the following thermal boundary conditions for thaiform 90N, (U )cleary

wall heat flux case Rexr = (Un)ciearsi26 R/vf = (Unt) gearn 26 R (47)

Olr+=gr+—0=0lr+=g R+ 10,

a0 keff 060 Table 1
—8r+ H=ERT—0 = E ar—+ € R+ 40 (42) Parameter values utilized in computations

CF Cc km/ky Pr Pr RT B Meff/y & @
055 01 1 1 1 % 0 1 0.7 0.95

and the following thermal boundary conditions for the
uniform wall temperature case
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where(U,)clearf: is the dimensionless mean velocity in the
clear fluid region(U,)clears: /-

ER*
/ utrtdrt
0

For the flow in a duct, the critical Reynolds number is
4x10°.

For the porous region, the Reynolds number based on
K1Y/?is defined as:

Rex = vii KY2/vs

2

U+)c|earfl = W

m

(

(48)

(49)

whereK is the permeability of the porous medium.

For small values of the Darcy number, the velocity profile
in the porous region consists of three regions [37], two
boundary layers (one adjacent to the solid wall and the
other adjacent to the porous/fiiinterface) and a constant
velocity region between them. In this constant velocity
region, the second term on the left-hand side of Eq. (23)

is negligible, and the velocity can be obtained by solving
ub =

bulk ™~ 2¢ rDal/2R+
Estimating filtration velocity,vsi, in the bulk of the fluid

a simple quadratic equation as:
[ < 1 2Dal/?
_l’_
region asvj = ufug'ulk, Eq. (49) can be recast as:

1
2 12
ZCpDal/2R+> + cré ] (50)

1 1 2
R =R+Da1/2{— +[( )
& 2cpDal/2R+ 2cpDal/2R+
2Dal/?

(51)

1/2
cr& i| }

According to Bear [23], most experiments indicate that
actual turbulence in porous media occurs at values of the
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1000

Da =102 smooth
800

Da =10 smooth

600

400 Da =102 rough

200
Da=10"* rough

15 20 25

1000

Da =102

isothermal rough

800

600 isothermal smooth

o — isoflux smooth
400

200 L— isoflux rough

0.2 0.4 0.6 0.8

6,0
(b)

Fig. 2. Distributions of dimensioaks velocity (a) and dimensionless
temperature (b) in the duct.

the critical Reynolds number of # 10%. This indicates
that the flow in the clear fluid region is turbulent. At the

Reynolds number at least one order of magnitude higher thanSaMe time,Re is much smaller than 100. This means

the Reynolds number at which deviation from the Darcy law

is observed due to the Forchheimer (quadratic drag) effects.

According to Nield and Bejan [29], transition from Darcy to
Forchheimer flow regime occurs whBey is larger than 10.
This means that the turbulent flow regime may occur in
porous media iRex is larger than 100.

Computational results farr = 0.55, Rt = 10°, =0,
ueft/mr =1, andé = 0.7 are given in Table 2. It can be
seen that for all values of the Darcy number utilized in
these computations the value R&:r is much larger than

Table 2
Reynolds numbers in the clear fluid and porous
regions of the channel

Da Rex g Rex

0.00001 18515 8
0.0001 20011 B4
0.001 22063 104
0.01 25033 nv

that the assumption of the flow in the clear fluid region

being turbulent and in the porous region being laminar is
a reasonable one. Again, as follows from [24], the model
suggested in this research may be valid even if the flow in the
porous region is in transition to turbulence or even weakly
turbulent.

Fig. 2(a) displays velocity distributions in the duct com-
puted for two values of the Darcy numb&a = 102 and
Da = 10"%, assuming either rough or hydraulically smooth
interface. For the case dba = 1072, the velocity pro-
files that correspond to the rough and smooth interfaces,
respectively, are remarkably different; results for the rough
interface case predict significantly smaller velocity in the
clear fluid region. This is because in the case of a rough in-
terface, the eddy viscosity in the clear fluid region is much
larger than in the case of a hydraulically smooth interface.
The case oDa = 1074, however, exhibits almost no dif-
ference between velocity profiles for the rough and smooth
interfaces. This is because,aecordance with Eq. (18), the
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250 70

. 60
200 isoflux rough isoflux wall

50

isoth | h
150 isothermal roug

40 Da =102

= isoflux smooth =
Z 100 Z 30
20
50
isothermal smooth 10
0
-5 -4 -3 2 -1 %.2
log,,(Da) g
(@ @)
2000 70
1800 Da=1
1600 60 isothermal wall
1400 isoflux rough
1200 isothermal_rough
=3
z 1000 =
Z
800
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Fig. 3. Effect of the Darcy number on the Nusselt number (a) and effect of
the Prandtl number on the Nusselt number (b).

(b)

Fig. 4. Effect of position of the porous/fluid interface on the Nusselt number
for uniform wall heat flux (a) and uniform wall temperature (b).

equivalent sand-grain roughness of the interface is propor-

tional to the square root of the Darcy number. This means Wall temperature cases. It can be seen that the Nusselt
that the equivalent sand-grain roughness of the interface fornumber computed with the rough interface assumption
Da= 10"%is ten times smaller than that f&yra = 1072. It is larger than that computedith the smooth interface
should be noted that the accuracy of the assumption that theassumption, and that the deviation between the rough and
flow in the porous layer can be modeled as laminar degradessmooth values of the Nusselt number increases as the Darcy
when increasing the Darcy number. Therefore, model pre- number increases. This is because equivalent sand-grain
dictions for a large Darcy number are less accurate than forroughness of the interface is proportional to the square root
a small Darcy number; however, the conclusion about the of the Darcy number, as follows from Eqg. (18).

significant effect the interface roughness on turbulent flows  Fig. 3(b) displays the effect of the Prandtl number on
in composite porous/fluid domains is not restricted by the the Nusselt number. These computations are carried out for
validity of a particular turbulence model utilized in this re- Da = 1 assuming that the turbulent Prandtl number,

search. remains equal to unity for any value &f. The effect of
Fig. 2(b) displays the dimensionless temperature distrib- the Prandtl number is to increase the Nusselt number.
utions obtained foDa = 102 for both uniform wall heat Figs. 4(a) and (b) display the effect of position of the

flux and uniform wall temperature cases, computed assum-porous/fluid interface on the Nusselt number for uniform
ing either rough or hydraulically smooth interface. The large wall heat flux and uniform wall temperature, respectively.
difference between the curves for the uniform wall heat flux According to Fig. 1, a larger value d&f corresponds to a
and uniform wall temperature cases is explained by different larger clear fluid region and a thinner porous layer at the duct
definitions of the dimensionless temperature for these two wall. Computations are not carried out all the way ug te
cases (see Egs. (26) and (30), respectively). 0 (that would corresponds to a duct completely filled with a
Fig. 3(a) displays the effect of the Darcy number on the porous medium) because it would be incorrect to utilize the
Nusselt number for both uniform wall heat flux and uniform model developed in this paper for computing turbulent flow
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1000

Da =102 and (b) display dimensionless velocity and temperature pro-
rough interface files for three values of, namely, 0.2, 0.45, and 0.9.
800 £=0. According to Fig. 5(a), a decrease pfeads to an increase
of velocity in the porous region, near the duct wall. This is
because as the clear fluid opening in the center of the duct
closes, more fluid is forced to go through the porous region.
An increase of velocity near ¢hwall leads to an increase of
£=02 the curvature of the temperature profile near the wall, which
has the effect of flattening the overall temperature profile
(compare curves in Fig. 5(b) that corresponé te 0.45 and
& = 0.2, respectively). This leads to a decrease in the mag-
nitude of7,, — Tw, which in turn leads to an increase in the
+ magnitude oNu asé becomes smaller.

A jump in the temperature derivative at the porous/fluid
interface in Fig. 5(b) is caused by the difference of fluid

600

400

200

1000

Da =102 thermal conductivity (molecular plus turbulent) and effec-
rough interface tive thermal conductivity of the porous medium (which is
800 £=045 | isoflux wall composed of a stagnant thermal conductivity and thermal

conductivity due to thermal dispersion).
600

4. Conclusions

A model that enables computing turbulent flow in com-
posite porous fluid/domains is developed. To account for the
roughness of the porous/fluid interface turbulent flow in the
0o X0 03 X 005 006 clear fluid region is computed utilizing a combined two-layer

6 k-1 andx—e model. It is found that the dependence of the
Nusselt number on the position of the interface exhibits a
(b) - . )
minimum for both uniform wall heat flux and uniform wall

Fig. 5. Distributions of dimensioabs velocity (a) and dimensionless  temperature cases.
temperature (b) in the duct for the uniform wall heat flux c&&= 102,
for three values of: 0.2, 0.45, and 0.9.
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